728x90

- Priors are a key component of Bayesian modelling. 

prior posterior
Prior is a belief you have on some quantity, typically on a set of parameters, without having any 
look at the data
If data is involved, the belief you have is updated 
and is called as posterior.


The Gaussian prior on the coefficients

→  coefficients are assumed to be distributed according to Gaussian/Normal distribution.

 

!= Gaussian prior over the error terms

→  Those are two different assumptions with very different effects

 

https://stats.stackexchange.com/questions/476706/what-does-it-mean-to-have-a-gaussian-prior

 

What does it mean to have a "gaussian prior?"

When reading up on ridge regression, I saw it stated that it has a "gaussian prior." I realized that I don't know what the word prior means in this context and what it is applied to? I sh...

stats.stackexchange.com

 

728x90

+ Recent posts